Identification of Novel Targets of CSL-Dependent Notch Signaling in Hematopoiesis
نویسندگان
چکیده
Somatic activating mutations in the Notch1 receptor result in the overexpression of activated Notch1, which can be tumorigenic. The goal of this study is to understand the molecular mechanisms underlying the phenotypic changes caused by the overexpression of ligand independent Notch 1 by using a tetracycline inducible promoter in an in vitro embryonic stem (ES) cells/OP9 stromal cells coculture system, recapitulating normal hematopoiesis. First, an in silico analysis of the promoters of Notch regulated genes (previously determined by microarray analysis) revealed that the motifs recognized by regulatory proteins known to mediate hematopoiesis were overrepresented. Notch 1 does not bind DNA but instead binds the CSL transcription factor to regulate gene expression. The in silico analysis also showed that there were putative CSL binding sites observed in the promoters of 28 out of 148 genes. A custom ChIP-chip array was used to assess the occupancy of CSL in the promoter regions of the Notch1 regulated genes in vivo and showed that 61 genes were bound by activated Notch responsive CSL. Then, comprehensive mapping of the CSL binding sites genome-wide using ChIP-seq analysis revealed that over 10,000 genes were bound within 10 kb of the TSS (transcription start site). The majority of the targets discovered by ChIP-seq belong to pathways that have been shown by others to crosstalk with Notch signaling. Finally, 83 miRNAs were significantly differentially expressed by greater than 1.5-fold during the course of in vitro hematopoiesis. Thirty one miRNA were up-regulated and fifty two were down-regulated. Overexpression of Notch1 altered this pattern of expression of microRNA: six miRNAs were up-regulated and four were down regulated as a result of activated Notch1 overexpression during the course of hematopoiesis. Time course analysis of hematopoietic development revealed that cells with Notch 1 overexpression mimic miRNA expression of cells in a less mature stage, which is consistent with our previous biological characterization.
منابع مشابه
Mastermind-1 is required for Notch signal-dependent steps in lymphocyte development in vivo.
Mastermind (Mam) is one of the elements of Notch signaling, an ancient system that plays a pivotal role in metazoan development. Genetic analyses in Drosophila and Caenorhabditis elegans have shown Mam to be an essential positive regulator of this signaling pathway in these species. Mam proteins bind to and stabilize the DNA-binding complex of the intracellular domains of Notch and CBF-1, Su(H)...
متن کاملKaposi's sarcoma-associated herpesvirus viral interferon regulatory factor 4 (vIRF4/K10) is a novel interaction partner of CSL/CBF1, the major downstream effector of Notch signaling.
In cells infected with the Kaposi's sarcoma-associated herpesvirus (KSHV), CSL/CBF1 signaling is essential for viral replication and promotes the survival of KSHV-infected cells. CSL/CBF1 is a DNA adaptor molecule which recruits coactivator and corepressor complexes to regulate viral and cellular gene transcription and which is a major downstream effector molecule of activated Notch. The intera...
متن کاملIdentification of a novel activation domain in the Notch-responsive transcription factor CSL.
CSL is the primary target of the Notch signaling pathway in mammalian cells. It is a DNA binding protein that generally represses transcription in the absence of Notch signaling and activates transcription upon formation of a ternary complex with NICD, the protease-generated intracellular domain of NOTCH: Previous mapping experiments identified the central third of CSL as both necessary and suf...
متن کاملNotch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation.
In the developing central nervous system (CNS), Notch signaling preserves progenitor pools and inhibits neurogenesis and oligodendroglial differentiation. It has recently been postulated that Notch instructively drives astrocyte differentiation. Whether the role of Notch signaling in promoting astroglial differentiation is permissive or instructive has been debated. We report here that the astr...
متن کاملIdentification of two binding regions for the suppressor of hairless protein within the intracellular domain of Drosophila notch.
Notch is a phylogenetically conserved transmembrane receptor that is required for many aspects of animal development. Upon ligand stimulation, a fragment of Notch is released proteolytically and enters the nucleus to form a complex with the DNA-binding protein CSL (CBF1/Suppressor of Hairless/Lag1) and activate transcription of Notch-CSL target genes. The physical structure of the Notch-CSL com...
متن کامل